Wasm Internals - Overview

Wasm 的历史发展

早期(Wasm MVP - 2017)

  • 诞生背景: Wasm 的设计目标是为了替代 asm.js,提供更小、更快、更安全的 Web 二进制格式。
  • 核心模块的初步定义: MVP(Minimum Viable Product)阶段定义了 Wasm Core Module 的基本结构:函数、内存、表、导入、导出、全局变量等。
  • 主要用例: 游戏引擎、音视频编解码、计算密集型任务等。
  • 限制:
    • 没有模块化系统: 模块之间没有标准的链接机制,只能通过宿主环境(如 JavaScript)进行协调。
    • 缺乏垃圾回收(GC): 需要手动内存管理或使用语言自带的 GC 机制(如 Emscripten 的 mimalloc)。
    • 没有线程: 无法直接利用多核 CPU。
    • 没有宿主 API 标准化: 模块与宿主环境的交互方式高度依赖宿主(如浏览器),没有统一的接口定义。
    • 没有组件模型: 模块重用和组合非常困难。

中期(MVP 之后 - 持续演进)

Wasm 社区和工作组认识到 MVP 的局限性,并开始着手扩展 Wasm 的能力,这直接影响了 Core Module 的能力:

  • 多值(Multiple Returns & Parameters): 允许函数返回多个值,接收多个参数,提高表达能力。
  • 引用类型(Reference Types): 引入了 externref 和 funcref,允许 Wasm 直接引用宿主对象和函数,而无需通过数字 ID 传递,为未来的 GC 和组件模型打下基础。
  • 固定大小的 SIMD(Fixed-width SIMD): 引入了新的指令集,允许在 Wasm 中进行向量化操作,进一步提升某些计算密集型任务的性能。
  • 线程(Threads): 引入了共享内存和原子操作,允许 Wasm 模块在多线程环境下运行,极大地提升了并行计算能力。
  • 内存增长和限制(Memory Growth and Limits): 提供了更灵活的内存管理机制。
  • Tail Calls(尾调用): 优化了函数调用的性能。

近期和未来(Wasm Component Model)

这是 Wasm 发展中最重要的方向之一,旨在解决 Core Module 在模块化和互操作性方面的根本性问题:

Wasm Internals: Stack Machine

Wasm 中的“栈机”(Stack Machine),这正是其核心执行模型之一。Wasm 是一种基于栈的虚拟机,这意味着它的所有操作都通过从一个操作数栈中弹出值、执行操作并将结果压回栈中来完成。它没有传统的“寄存器”概念。

什么是栈机?

在计算机科学中,栈机是一种计算模型,其中指令操作数被隐含地从一个被称为“操作数栈”的内存区域中获取,并且结果被隐含地压回这个栈。这种模型与基于寄存器或基于累加器的模型形成对比。

Wasm 栈机的工作原理

Wasm 模块中的函数是由一系列指令组成的。这些指令会操作一个中央的操作数栈。

  1. 操作数栈(Operand Stack)

    • 这是 Wasm 执行函数时最核心的数据结构。
    • 所有的操作数(如整数、浮点数)和操作结果都临时存储在这个栈上。
    • 指令不会像在注册机中那样直接指定操作数的位置(如“将 R1 的值加到 R2”)。相反,它们会假定操作数已经在栈的顶部。
  2. 局部变量(Local Variables)

    • 除了操作数栈,每个函数调用还有一个独立的“局部变量”区域。
    • 局部变量是命名的存储位置,可以在函数的整个执行过程中被访问和修改。
    • 虽然局部变量不是栈的一部分,但有很多指令允许你将局部变量的值压入栈中,或者将栈顶部的值存储到局部变量中。
  3. 参数(Parameters)

    • 函数的参数在函数被调用时,会被初始化为局部变量的一部分(通常是前几个局部变量)。
    • 它们也可以被认为是函数执行上下文的一部分。
  4. 指令的操作

    • 压栈(Push):很多指令会将值压入栈中。例如:
      • i32.const 42:将整数常量 42 压入栈。
      • local.get <idx>:获取索引为 <idx> 的局部变量的值并压入栈。
    • 弹栈(Pop):大多数操作指令会从栈顶弹出所需数量的操作数。例如:
      • i32.add:弹出栈顶的两个 i32 整数,将它们相加,然后将结果压回栈。
      • if/else/loop 等控制流指令的条件值也会从栈中弹出。
    • 复合操作:一些指令可能弹出一个值,执行一些副作用(如内存写入),而不压入任何新值。例如:
      • i32.store:弹出内存地址和要存储的值,将值写入内存。

栈机模型的优势与特点

  1. 紧凑性(Compactness)

    • 指令更短,因为它们不需要编码操作数的位置。例如,一个加法操作,在寄存器机中可能需要指定两个源寄存器和一个目标寄存器;在栈机中,它只是一个简单的 add 指令。
    • 这有助于生成更小的二进制代码,对于 Web 环境中的快速下载和解析非常有利。
  2. 简化编译器后端(Simplified Compiler Backends)

    • IR(中间表示)到指令的映射通常更直接。许多高级语言的语义本身就可以很容易地映射到栈操作。
    • 这使得将 C/C++/Rust 等语言编译到 Wasm 变得相对容易。
  3. 易于验证(Easy to Validate)

    • Wasm 在加载时会进行严格的类型检查和结构验证。栈机模型使得验证其类型安全变得相对容易。例如,当检查 i32.add 指令时,验证器只需确保栈顶有两个 i32 类型的值。
    • 这对于沙盒环境中的安全性至关重要。
  4. 独立于目标架构(Architecture-Independent)

Kubernetes CSI 简介

K8s CSI 是 Kubernetes 中非常重要的一个组件,它解决了存储与计算分离的复杂性,并为容器化应用提供了持久化存储的能力。

1. 基本概念

CSI (Container Storage Interface) 译为 容器存储接口。它是由 Kubernetes 社区与存储厂商共同制定的一套标准接口规范。

在 CSI 出现之前,Kubernetes 存储插件的开发和管理存在以下痛点:

  • 紧耦合问题: Kubernetes 内部集成了大量的存储驱动(In-tree 存储插件),例如 AWS EBS、GCE PD、Azure Disk、Ceph RBD 等。这意味着每当存储厂商需要支持 Kubernetes 时,他们都必须将其存储驱动代码提交到 Kubernetes 的核心代码库中。这种方式导致了:
    • Kubernetes 代码库臃肿: 集成了大量存储逻辑,增加了核心代码的复杂性和维护难度。
    • 发布周期长: 存储驱动的更新需要跟随 Kubernetes 的发布周期,新功能和 bug 修复不能及时推送到用户。
    • 存储厂商开发受限: 每次更新都需要与 Kubernetes 社区协调,开发和测试流程繁琐。
  • 兼容性问题: 不同存储厂商的存储系统差异巨大,缺乏统一的接口规范,导致存储系统与 Kubernetes 之间的集成困难。

CSI 的目标就是解决这些问题,实现存储系统与 Kubernetes 的解耦。 它定义了一套通用的接口,允许任何存储厂商开发自己的 CSI 驱动,然后通过这些驱动来与 Kubernetes 进行交互,从而为容器提供存储服务。

1.1. 资源定义

1.1.1. Volumes

Volumes 是 Kubernetes 中 Pod 通过文件系统访问和共享数据的抽象。它主要提供了如下功能:

  • 通过 ConfigMap 或者 Secret 共享配置;
  • 跨容器、跨 Pod 甚至跨 Node 共享数据;
  • 数据持久化。在 Pod 销毁之后仍能继续访问数据。 对于 Pod 来说,Volumes 通过 .spec.volumes 提供给 Pod,容器通过 .spec.containers[*].volumeMounts 来将指定 Volumes 挂载到指定目录。

1.1.2. Persistent Volumes 和 Persistent Volumes Claim

PV 和 PVC 提供了两套 API 将存储的提供和消费分离。

Spurious Retransmit 导致 NAT 设备响应 RST

在一个线上问题排查过程中,出现了一个新的问题:wget 下载文件在连接建立很短的时间内(1 - 2s)就被 RESET 了。 首先先简要说明一下链路:

客户端经过一个SNAT设备出公网,在服务器上下载一个大文件。端到端的 RTT 大约 90 ms。由于最开始并没有怀疑到 SNAT 设备,并且 server 端无法抓包,我们分别在客户端 和 SNAT 设备到 server 间一台网元设备上抓包。 中间网元设备

SNAT 设备

如上,中间网元设备显示客户端(端口 34567)先发送了 RST 报文,随后服务器(端口 443)响应 RST 报文。但是客户端抓包显示它根本没有发送过 RST 报文。

此时,我们再从 SNAT 设备上抓包,发现就是 SNAT 设备首先给服务器发送了 RST 报文。

这里的 SNAT 设备实际上是一台基于 IPtables 的 Linux 设备。

抓包可以看到,RST 是对一个 TCP Spurious Retransmission 的响应。为什么会发出这个 RST 呢?正好网上有一个相似的场景:Add workaround for spurious retransmits leading to connection resets

总的来说,就是 spurious retransmits 报文在序列号超出 TCP 窗口时,会被 conntrack 认为是 invalid 包,从而不再经过反向 SNAT 规则的处理。由于目的地址没有被转换,报文会按照原来的目的地址送往 INPUT,而本地又没有这个 socket,则响应一个 RST 报文。

VRF: An Overview

什么是 VRF(virtual routing forwarding)

VRF是一种实现三层网络隔离的关键技术。它通过创建多个路由表,为不同的网络流量提供独立的转发路径。 这意味着,任何三层网络结构,如接口的IP地址、静态路由的配置,甚至BGP(边界网关协议)会话,都可以被映射到特定的VRF中。这种映射机制就像是为每个VRF构建了一个独立的网络空间,彼此之间相互隔离,极大地增强了网络的安全性和管理的便利性。在MPLS VPN(多协议标签交换虚拟专用网络)等应用场景中,VRF为实现大规模的网络隔离和灵活的路由策略提供了基础框架。就像 VLAN 隔离了二层网络一样,VRF 隔离了三层网络。

5eb20c3e919fe3724b92c2ae7a66a7da_MD5

为什么需要 VRF

在 VRF 出现之前,Linux 用户主要采用两种方式来尝试实现类似的功能:策略路由(policy routing)和网络命名空间(net namespace)。然而,这两种方法都存在明显的局限性。

策略路由虽然能够通过多个路由表和策略规则来模拟 VRF 的部分功能(事实上,在 Linux 中,也是基于策略路由来去对 VRF 做的实现),但它的缺点十分突出。这种方式在配置和管理上非常复杂,难以确保网络隔离的有效性,在面对严格的网络审计时,往往无法通过。其复杂性不仅增加了运维的难度,还可能导致网络故障的风险上升,因此不被推荐使用。

网络命名空间在容器技术兴起后得到了广泛应用,它能够为容器提供全面的网络隔离。但在模拟 VRF 功能时,却显得有些“大材小用”。网络命名空间会对所有网络相关的资源进行完全隔离,包括设备、接口、ARP 表和路由表等。这意味着,即使是一些不需要隔离的服务,也会被隔离在不同的命名空间中。以 LLDP(链路层发现协议)为例,在使用网络命名空间的情况下,若要在不同的网络隔离环境中使用 LLDP,就需要在每个命名空间中单独运行实例,并且由于默认套接字相同,还需要为每个实例创建独特的套接字。这不仅增加了系统的开销,还使得管理变得更加复杂。相比之下,VRF 在隔离三层网络结构的同时,允许全局配置的共享和非三层感知服务的统一运行,大大提高了资源的利用效率。

Policy Routing VRF Net Namespace
隔离路由表 隔离三层网络 整个协议栈从二层到 socket 隔离

a9f7c55f8f39572d339b138fb1e12429_MD5c9b6614c864c7d35a8ef0a4f12ecdbfa_MD59edc8b051f504bf72140d1238513d687_MD5

VRF 配置

在 Linux 系统中配置 VRF,主要借助iproute2包来完成一系列操作。

  • 创建 VRF,并关联到 table 1
test1@test1:~$ ip link add vrf-1 type vrf table 1
test1@test1:~$ ip link set vrf-1 up
  • 添加接口到 VRF,可以看到 wg0 的 master 是 vrf-1,所有 wg0 的流量会使用关联的 vrf-1 路由表进行路由
test1@test1:~$ ip link set wg0 master vrf-1
test1@test1:~$ ip -d link show wg0 
9: wg0: <POINTOPOINT,NOARP,UP,LOWER_UP> mtu 1400 qdisc noqueue master vrf-1 state UNKNOWN mode DEFAULT group default qlen 1000
    link/none  promiscuity 0 minmtu 0 maxmtu 2147483552 
    wireguard 
    vrf_slave table 1 addrgenmode none numtxqueues 1 numrxqueues 1 gso_max_size 65536 gso_max_segs 65535
  • 添加和查看 VRF 静态路由
root@test1:~# ip route add default via 10.1.0.10 vrf vrf-1
root@test1:~# ip route show table 1 
default via 10.1.0.10 dev wg0 
local 10.1.0.10 dev wg0 proto kernel scope host src 10.1.0.10 
root@test1:~# ip route show vrf vrf-1 
default via 10.1.0.10 dev wg0 

VRF 之间路由

有两种方法可以执行跨 VRF 路由。第一种方法涉及一个 VRF 的表中配置的路由,指向绑定到不同 VRF 的设备。